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ABSTRACT: Using Brownian dynamics simulation, we determine the chain
orientation and stretching and their connection to stress overshoot in an
entangled polymer melt undergoing startup shear at rates lower than the
reciprocal of the Rouse time yet higher than the reciprocal of the reptation
time. In this rate regime, the prevailing tube theory attributes the stress
overshoot to alignment of the primitive chain. In contrast, our results reveal
that there is substantial chain stretching that persists well beyond the Rouse
time, and it contributes significantly to the initial stress growth. In particular,
stress overshoot is found to be primarily due to chain retraction after
considerable stretching rather than chain orientation.

A striking rheological phenomenon in entangled polymer
melts1−5 and solutions6−11 is stress overshoot during

startup shear at sufficiently high rates.9,10 A widely accepted
explanation of this phenomenon12,13 is based on the tube
model.14 The tube model simplifies the complex, many-body
effects of chain interpenetration in terms of a smooth tube-like
confinement on a test chain and assumes that the test chain
undergoes Rouse dynamics inside the tube. This simplified
physical picture leads to decoupling of chain stretching, which
is assumed to occur on scales of the Rouse time, τR, from chain
orientation, which occurs on scales of the reptation time τd.
Thus, when the shear rate γ ̇ is higher than the reciprocal of the
reptation time 1/τd but lower than the reciprocal of the Rouse
time, 1/τR, that is, when the Weissenberg number Wi = γτ̇d > 1
and yet the Rouse-Weissenberg numberWiR = γτ̇R < 1, the tube
model envisions little stretching of the primitive chain so that
the stress is dominated by chain orientation. Consequently,
stress overshoot in this regime is attributed to chain alignment
in the confining tube by the shear deformation.13,14

In spite of its apparent success in describing stress overshoot
during startup shear (especially when plotted on log−log
scales),15,16 there has never been direct validation of the
molecular mechanism depicted by the tube model.17

Furthermore, there has been considerable controversy regard-
ing the theoretical implications of a number of particle-tracking
velocimetric observations from S.-Q. Wang’s group.18,19 Thus,
there is a strong need to use molecular simulation to directly
examine the molecular mechanism and test the tube model
predictions.
In this Letter, we report results from Brownian dynamics

(BD) simulation aimed to explicitly elucidate the molecular

origin of stress overshoot upon startup shear of entangled
polymer melts under conditions Wi > 1 and WiR < 1. Our
results demonstrate that the stress associated with the chain
orientation continues to increase with strain well past the
maximum of the total shear stress. There is significant chain
stretching up to many Rouse times, which contributes
substantially to the total stress. In particular, the stress
maximum σmax correlates closely with the maximum in chain
stretching. Both σmax and the strain at the stress maximum, γmax,
increase with shear rates, but results for the different rates are
superposable into a master curve when the stress and strain are
both scaled by their corresponding σmax and γmax, and this
master curve coincides with that obtained from the
experimental data.11

We use the standard Kremer−Grest model,20 where
monomers are modeled as beads interacting through a
truncated and shifted 6−12 Lennard-Jones potential with a
cutoff radius rc = 21/6d, and chain connectivity is modeled by
the finitely extensible nonlinear elastic (FENE) potential
between adjacent monomers, with a spring constant k = 30
in reduced units and fully stretched bond length R0 = 1.5d.20

This choice of parameters ensures no chain crossing for the
shear rates used in our simulation.21−23 The simulation uses
standard Brownian dynamics in the LAMMPS platform. The
system consists of 423 chains of length N = 500 at a monomer
density of ρ = 0.85d−3 in a box of volume V = LxLyLz, with Lx =
Ly = 6Rg0, and Lz = 4Rg0, where x, y, and z refer to the flow,
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gradient, and vorticity directions, and Rg0 is the equilibrium
radius of gyration. Length, energy, and time are non-
dimensionalized respectively by the monomer diameter d,
energy parameter ε, and the Lennard-Jones time scale τLJ =
(md2/ε)1/2, where m is the mass of the particle. The
temperature is chosen such that kBT = 1. The simulation
time step is Δt = 0.001τLJ. In the quiescent state, the number of
monomers in an entanglement strand is found to be Ne ≈ 36
determined from the crossover time (from t1/2 to t1/4 scaling) in
the monomer mean-square displacement, in agreement with
the known literature value.20,24 The Rouse time τR is
determined from τR = (1/3π2)·6⟨Rg0

2 ⟩/DR,
14 where DR is the

Rouse self-diffusion constant obtained by extrapolation of
simulation data of nonentangled polymers. The reptation time
τd is obtained by the relation τd/τR = DR/Ds, where Ds is the
actual self-diffusion constant.14 Numerically consistent with
previous results,20 we find τR and τd are 2.3 × 105 and 3.3 × 106,
respectively.
We initialize our system by lattice Monte Carlo sampling

allowing chain crossing25 to achieve rapid entanglement of the
chains. We then switch to BD and further equilibrate the
system for a time τd. Conformation properties, such as the
mean square internal distances ⟨(ri⃗ − rj⃗)

2⟩/|i − j|26 are
evaluated to ensure equilibration of the system before turning
on shear. The simulation uses periodic boundary condition in
the x and z directions and Lees-Edwards boundary condition in
the y direction.27 The data reported are results of averaging
over 16 independent samples. Three different shear rates γ ̇ =
(1/6)τR

−1, γ ̇ = (1/4)τR
−1, and γ ̇ = (1/2)τR

−1 have been used;
below we designate the shear rates using the Rouse-
Weissenberg number WiR = γτ̇R.
The shear stress σxy is calculated using the well-known

microscopic expression:14
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where Fix
α is the x-component of the total force acting on the

monomer i of the αth chain located at ri⃗
α. Figure 1a shows our

simulation results for σxy
micro versus strain for the three different

shear rates. For comparison, we include results from two
versions of the tube theory, the original Doi−Edwards model14
(hereafter referred to as the DE model or DE) and the more
refined GLaMM theory.15 In the tube model, the shear stress is
calculated by using the following expression from the primitive
chain14,15
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where G0 = ckBT,
28 with c the number of tube segments per

unit volume given by c = ρ/Ne, Z = N/Ne is the number of
entanglements per chain, l0 is the Kuhn length for the primitive
chain (i.e., the size of a tube segment), and s is the curvilinear
coordinate along the primitive chain. The DE model ignores
the small amount of chain stretching for WiR < 1, so that eq 2
can be reduced to

σ ≈ G S3xy xy
DE

0 (3)

where Sxy is the same-point correlation function for the unit
tangent u ⃗(s) and is given by
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The GLaMM theory is a refined theory that includes all the
key components in the tube model: reptation, chain stretching/
retraction, contour length fluctuation, convective constraint
release and variable number of entanglements, and is supposed
to cover the full range of deformation rate.15 The GLaMM
theory solves for the tangent correlation function tensor f(s,s′)
= ⟨(∂R⃗(s)/∂s)(∂R⃗(s′)/∂s′)⟩. The shear stress is then obtained
by taking the xy component of f(s,s′) with s′ = s.15,29

For additional comparison, we also include stress produced
by an affine deformation that is given straightforwardly as σxy =
G0γ.
As shown in Figure 1a, both versions of the tube theory

considerably under-predict the stress compared with the
simulation data. Also, consistent with the experimental
observation,11 the stress overshoot and the peak strain from
the simulation increase appreciably with shear rate, but the data
for the three shear rates approximately collapse onto a single
master curve upon normalizing respectively by σmax and γmax

and this master curve agrees with that obtained from the
experiment;11 see Figure 1b. In contrast, the stress predicted by
DE is independent of the shear rate. The stress calculated from
GLaMM shows modest increase with shear rate, but the
location of the stress maximum remains nearly independent of
the shear rate, and the overall quantitative discrepancy from the
simulation results is actually larger than the DE model.
Furthermore, both the DE model and the GLaMM theory
yield initial slopes that are less than 1 in the stress−strain curve,

Figure 1. (a) Stress vs strain during startup shear under the condition
of WiR < 1 and Wi > 1. For comparison, the stress−strain relations for
affine deformation and predicted by the DE theory under the
independent alignment approximation (DE/IAA, black dashes) and by
the GLaMM theory30 (red symbols) are included. (b) Master curve for
the normalized stress σxy(γ)/σmax as a function of the normalized strain
γ/γmax from (a) and experimental data in ref 11.
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in contrast to the simulation data which yield an initial slope of
1 for all shear rates, the slope of the affine deformation.
To understand the origin of the discrepancy between the

simulation results and the tube model predictions shown in
Figure 1, it is instructive to separately examine the orientational
and the remaining contributions in stress. To do so, we
compute the stress from the simulation using the intrachain
expression, eq 2. However, the use of eq 2 and later the
calculation of the contour length require the identification of
the primitive chain from the monomer coordinates. Such a
method is not provided by the tube model. Primitive chains
defined by existing PPA methods22,31−33 are not suitable for
computing the stress using eq 2 since these methods involve
deforming the chains from their in situ conformations. We
therefore propose the following method for constructing a
discrete primitive chain. The chain is divided into Z = N/Ne
units with Ne ≈ 36 monomers in each unit, which serves as a
tube segment. The center of mass of the Ne monomers in the
unit is R⃗s. The stress formula eq 2 can then be discretized into
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In this construct, Ne serves as a coarse-graining scale for
defining the primitive chain, consistent with the intuitive
picture of the primitive chain in the tube model. As can be seen
in Figure 2, the stress calculated using eq 5 is in good
agreement with that calculated from eq 1, confirming the
validity of our coarse-graining method.

We can separately compute the orientational stress using the
intrachain expression, eq 5, by converting the bond vector into
the unit vector
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We define the difference between the full intrachain stress and
the orientational stress as the excess stress. In Figure 2 we show
the total stress, the orientational stress, and the excess stress
from the simulation and from the DE and GLaMM theories, for
WiR = 1/6, which provides a closer test for the WiR < 1 regime.
The DE model has only the orientational stress. The GLaMM

theory in principle allows stretching contributions, but the
stress is dominated by orientation. Both the DE and GLaMM
theories predict stress overshoot arising from the orientational
contribution, whereas the orientational stress from the
simulation increases monotonically without a peak. The excess
stress from simulation contributes significantly to the overall
stress up to many Rouse times and exhibits a pronounced peak.
Since the orientational stress alone does not produce an
overshoot, the overshoot must be due to stretching in the sense
that there would be no overshoot in the absence of chain
stretching.
The anticipated chain stretching should result in an increase

of the contour length of the primitive chain. To obtain the
contour length, we calculate the linear distance between two
consecutive tube segments from |R⃗s+1 − R⃗s|. The average
contour length is then L = Σs=1

Z−1⟨|R⃗s+1 − R⃗s|⟩. The bond length l
is obtained from L = (Z − 1)l, as depicted in the inset of Figure
3; at equilibrium, l = l0, so the equilibrium length is L0 = (Z −

1)l0.
34 The simulation data in Figure 3 show pronounced peaks

for all three shear rates, spanning several strain units,
corresponding to many Rouse times. In contrast, the
GLaMM theory predicts nearly a monotonic approach to
steady state with very faint peaks; the peaks are nearly
imperceptible forWiR = 1/6 and 1/4 on the scales of the figure.
The nonmonotonic change of the contour length in the
simulation results indicates significant chain stretching followed
by retraction. Here, too, the initial increase of the chain contour
length follows closely that for affine deformation, which is given
simply by L/L0 = (1 + γ2/3)1/2. That the peak in the contour
length occurs at roughly the same strain where the shear stress
overshoots in Figure 1a points strongly to chain stretching and
retraction (which are coupled to orientation) as the root cause
of stress overshoots.
In our recent work,35 we observed that, under conditions Wi

> 1 and WiR < 1, up to many Rouse times, the decline in the
number of original entanglements is slower than that under the
equilibrium condition and rapid decline of the original
entanglements occurs only at sufficiently large strains. Figure
4 shows the evolution of the survival probability of the original
entanglements P, which is obtained by normalizing the number
of surviving original entanglements for a tagged chain by the
equilibrium value of the number of entanglements per chain,
both obtained using the PPA method with energy minimiza-
tion.22 The crossing time between this probability with the
corresponding probability at equilibrium decreases with
increasing shear rate. Remarkably, the crossing time for each

Figure 2. Stress contributions at WiR = 1/6. The notation “micro” and
“intra” designates stress calculated by the microscopic expression eq 1
and intrachain expression eq 5, respectively; “or-simu” and “ex-simu”
are, respectively, the orientational and excess stress from the
simulation; “or-GLaMM” and “ex-GLaMM” are the corresponding
quantities calculated from the GLaMM theory.

Figure 3. Evolution of the normalized contour length of the primitive
chain as a function of strain.
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shear rate in the survival probability corresponds closely to the
peak strain of the contour length. This observation suggests
that stretching of the chain contour is associated with the initial
deformation of a “tightened” network (relative to the
equilibrium state), while chain retraction is associated with
the loss of the entanglements, when the intrachain retraction
force exceeds the interchain forces that hold the network.36

Since the survival probability of the original entanglements
depends on the chain relaxation dynamics, a higher shear rate
can produce a greater degree of chain deformation, leading to
higher peak strain and peak stress, although the peak time is
shorter. That σmax is nearly linearly proportional to γmax (as
indicated by the purple arrow in Figure 1a) implies that the
stress maxima attained with different shear rates correspond to
entanglement networks whose effective elastic moduli have
roughly the same value.
In conclusion, using BD simulation, we have examined the

molecular origin of stress overshoot in startup shear of
entangled polymer melts under conditions of Wi > 1 and
WiR < 1. Our results reveal that there is significant change in
the primitive chain contour length and that chain stretching
contributes substantially to the overall stress. Chain stretching
and retraction take place over many Rouse times in this rate
regime. For WiR = 1/6, substantial chain retraction does not
occur until γ = 1.75 corresponding to 10.5τR. We conclude that
retraction of the stretched chains, rather than chain alignment,
is the primary cause of stress overshoot. That both chain
stretching and shear stress initially follow the affine deformation
behavior up to strains of order one (and up to many Rouse
times) suggests the active role of interchain forces not captured
in the tube construct. While the exact nature of these forces
remains to be elucidated by future work, the strong correlation
between the contour length and the survival probability of the
original entanglements suggests that chain stretching is
associated with the deformation of an intact entanglement
network, while retraction results from the rapid disentangle-
ment at sufficiently large strains. These findings call into
question the barrier-free chain retraction mechanism as
envisioned in the tube model, at least for startup shear, and
motivate the development of improved or alternative theories.
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(23) Kröger, M.; Loose, W.; Hess, S. J. Rheol. 1993, 37, 1057.
(24) PPA analysis in ref 22 gives an average number of segments
between entanglements Nseg ≈ 72 ≈ 2Ne. The factor of 2 arises from
different definitions of Ne, which has been discussed in ref 37. Other
than setting the modulus G0, the actual values of Ne are not important
(within some reasonable range) and will only affect the numerical
accuracy of the discretization in eqs 5 and 6.
(25) Shaffer, J. S. J. Chem. Phys. 1994, 101, 4205.
(26) Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J. J.
Chem. Phys. 2003, 119, 12718.
(27) Lees, A. W.; Edwards, S. F. J. Phys. C 1972, 5, 1921.
(28) Note our definition of G0 differs from Ge in ref 14 by a factor of
1/3, that is, Ge = 3G0.
(29) Ge in ref 15 is related to G0 by a factor of 4/5, that is, Ge = 5G0/
4. The GLaMM theory includes an additional convective contribution

Figure 4. Survival probability of original entanglements as a function
of time in units of τR.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz500260h | ACS Macro Lett. 2014, 3, 569−573572

mailto:ljan@ciac.jl.cn
mailto:swang@uakron.edu
mailto:zgw@caltech.edu


to stress, which is numerically negligible for shear rates considered
here.
(30) We chose the parameters in the GLaMM theory15 to be αd =
1.15, cn = 0.1 and s = 2.0 for the contour length fluctuation,
constraint release and retraction terms, respectively, and used the
number of chain entanglements Z = 14. These parameters are identical
to those use in Graham, R. S.; Henry, E. P.; Olmsted, P. D.
Macromolecules 2013, 46, 9849 in their comments on our recent work,
ref 35.
(31) Zhou, Q.; Larson, R. G. Macromolecules 2005, 38, 5761.
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